
Parallel patterns: What organizations can learn from supercomputers

Lorenz Graf-Vlachy

University of Passau

Chair of Technology, Innovation, and Entrepreneurship

94030 Passau

lorenz.graf-vlachy@uni-passau.de

The author would like to acknowledge helpful comments from Georg Wittenburg.

This manuscript was published in Management+Innovation, 2014, Nr. 1, pp. 34-39.

Parallel patterns: What organizations can learn from supercomputers

In today’s high-speed world, leaders face the need to make their organizations faster and faster.

Engineers building and programming supercomputers have historically been facing similar

challenges. To address these challenges, they developed some ingenious techniques to increase

the speed of computations – and now is the time for managers to see what can be learned from

supercomputer engineers.

Performance pressure on organizations is high these days. Companies need to become quicker

providers of solutions to customers’ problems, administrations need to respond to citizens’

requests faster, intelligence agencies need to increase the speed of their information processing

[1].

A key step to addressing these needs is to hire the right people and train them well. But, of course,

this is only half of the equation. The other half is making sure that an organization’s individual

members interact in the most efficient way possible.

Similar to organizations, today’s supercomputers consist of large numbers of individual

processing units that need to interact. Hence, the engineers that program supercomputers face

challenges akin to those faced by organizational leaders. In fact, supercomputer programming can

point us to several different approaches for effectively harnessing the power of discrete elements.

The ascent of parallel computers

Ever since the creation of the first functional freely programmable computer “Z3” by Konrad

Zuse in 1941, engineers raced to build better and faster computers. And in fact, over the years,

performance of computers improved dramatically. While computers could initially only perform

comparably simple operations, today they are used to simulate highly complex phenomena such

as nuclear explosions, the earth’s climate, or the effects of a new drug on organisms.

A large part of the race was about who would build the fastest processor. The processor is the unit

of the computer that performs the actual computations, i.e. the actual “electron brain.” At least

since the 1970s, processor speed would double roughly every two years. This development was

dubbed “Moore’s law,” and was built on the observation and prediction that the number of

transistors on integrated circuits, and hence computing power, increased at this pace [7].

Computer processors got faster and faster. And they keep improving to this day—Moore’s law

still holds.

However, when we take a look at the fastest computers of the world, we see that another aspect

has become more and more relevant over the last decades. In the TOP500 list, a ranking of the

world’s fastest supercomputers, the last computer that obtained its power from a single processor

appeared in 1996 [12]. What do the other, faster supercomputers consist of? Well, quite simply,

multiple processor. In fact, all contemporary supercomputers are actually many computing

devices linked together.

Linking many comparably cheap processors together to form one single supercomputer has led to

dramatic—exponential, really—performance increases. The fastest supercomputer in 2014 is

about 600,000 times faster than the top supercomputer of a decade ago and it can compute a

staggering 33.8 PetaFLOPs per second. This means the world’s fastest supercomputer can

compute 33,900 millions of millions operations per second. That’s a figure with 15 zeros.

This exceptional computing device, which is located in Guangzhou, China, goes by the name of

“Milky Way 2.” It consists of over three million individual processors. Since all these processors

are operating in parallel, supercomputers of this type are also called “parallel computers.”

Programming problems

Usually, such supercomputers are not commissioned to solve many small problems, so that each

processor gets its own to solve. Instead, they are usually built to solve one big problem. And this

can be a challenge.

Most algorithms, the blueprints of software, are designed for one single processor only. Hence,

most computer software is written to run on a single processor. It takes its input, processes it in

isolation from the outside world, and then spits out the result. In the realm of supercomputers,

however, software programs need to make use of the many processors available if they want to be

worthy of running on such exquisite hardware. Problem solving activities need to be performed in

parallel—and this usually requires re-thinking the way software is written.

Because it is often not obvious how to identify and exploit what is called “concurrency” in a

problem and appropriately structure a computer program to make use of multiple processors,

many software engineers across the world invested a lot of time and thought into this matter. They

came up with a few basic principles on how to write programs for supercomputers. In the

language of software engineers, they developed “design patterns” for parallel computing [3].

Organizing work with parallel patterns

There exist at least three basic organization principles for how to structure a problem, and hence a

computer program for parallel computing [6]. These patterns of assigning work to processors are

by tasks, by data decomposition, and by data flow (see Figure 1).

Figure 1: Parallel design patterns

First, in many cases, computer programs are best understood as a collection of tasks that need to

be performed. Structuring by tasks means directly asking the question: What to do? Two sub-

patterns can help answer this question.

One way of structuring by task is task parallelism. Basically, this can be used whenever the

overall problem is essentially just a set of individual tasks and the tasks are virtually independent

from each other. In this case, each processor can work on one task. An example would be the

problem of taking the square root of eight different numbers. Eight different processors could

simply take the square root of one number each. This is so simple that the technical term for

problems like this is “embarrassingly parallel.”

When

applicable?

Data is split into

concurrently

updatable

chunks, but

chunks not

completely

independent

Tasks are

virtually

independent from

each other

Tasks can be split

and results then

combined to yield

overall solution

Consistent stream

of data; same

processes applied

to every element

Groups of semi-

independent

tasks interacting

in irregular

fashion

Organizational

example

Introducing new

IT systems at

business unit

level; must

interact with other

business unit's

system

Processing

insurance appli-

cations

Performing

inventory taking;

calculating overall

company risk in

insurance

company

Assembly line Project-based

organization,

"newsroom" with

editors, authors,

fact-checkers

Algorithm

design options:
Parallel design

patterns

Structure by

Flow of Data

Structure by

Tasks

Structure by

Data

Decomposition

How to design an algorithm?

Task

Parallelism

Divide and

Conquer
Pipeline

Event-based

Coordination

Data

Decomposition

Illustration

Another task-based strategy is divide and conquer. It can be used when the overall problem can be

split into smaller, independent subtasks and when the results of these subtasks can be recombined

to yield the full solution. An example could be the multiplication of eight numbers. In the first

step, four processors each multiply two numbers, then two processors each multiply two of the

results, and finally, one processor multiplies the last two results.

Second, sometimes, programs are best understood as a sequence of operations on data chunks

resulting from the decomposition of the data into concurrently updatable pieces.1 This design

pattern takes the perspective of data, as opposed to that of tasks and therefore asks: Of what

structure is the data that is to be manipulated?

The pattern is useful when the data can be split into concurrently updatable chunks, but the

chunks are not completely independent (in the case of complete independence, the simpler task

parallelism should be used). The basic idea is that each processor accesses mostly “its own”

chunk of data exclusively, and that only after each “update cycle,” the processors working on

“neighboring data” need to briefly interact with each other. An example is the blurring of digital

images. To blur an image, every pixel’s color has to be changed depending on the color of the

surrounding pixels. Using the decomposition design pattern would imply that the entire image is

split up into smaller sections and that each processor can process one section. Largely, these tasks

can be conducted independently, and only at the edges of the section does every processor need to

access the information from the neighboring sections.

Third, in some occasions, the flow of data is the best organizing principle for parallel programs.

The fundamental question here is: When does data have to be processed? Again, there are two

sub-patterns.

1 Technically, there is a second pattern related to data composition, namely the “recursive data” pattern. The pattern is

appropriate when the problem to be solved has the structure of following links through a recursive data structure, e.g.,

a binary tree. Since this pattern does not seem to have any relevance to real-world organizational problems, it is not

further treated here.

One is called pipeline. It is useful when there is a consistent, regular stream of incoming data

flowing through multiple stages and the same manipulation processes is applied to every element.

Naturally, every processor can take on one stage. If, for example, an incoming stream of

Fahrenheit temperature values must be converted to Celsius, one processor could deduct 32 from

the Fahrenheit temperature, and another processor could multiply the result by 5/9 to yield the

Celsius temperature.

The other flow-based pattern is event-based coordination. It applies when groups of semi-

independent tasks are interacting in an irregular fashion. This means there is an irregular

information inflow, the tasks are asynchronous and they react to events and cause events.

Consider, for example, a computer system that approximates complex mathematical problems “on

demand.” Whenever a new problem arrives, one processor reacts to this event and begins

approximating a solution. After a predefined time span, the processor signals that its time is up

and presents its current best approximation. This event causes another processor to take up the

solution and evaluate it against certain quality criteria, e.g. minimum precision. If the quality is

sufficient, the processor signals that the calculation is finished. If the quality is not sufficient, the

processor announces this, and another processor reacts to this event by further refining the

approximation.

Organizations as computers

There exists a long tradition of looking at computers to understand other phenomena. Several

scholars have, for example, studied computers to better understand individuals and their brains,

and developed ideas like information processing theory from the comparison [4, 8, 9]. Such

comparisons can be helpful and inspiring even when one considers that computers are really

profoundly different from human brains [10].

What if organizations can be understood as supercomputers built out of human minds instead of

silicon-based processors? Maybe there is something to learn from parallel design patterns if one

wants to optimize organizational processing speed. In fact, organizations are similar to computers

at least in the way that both can be understood as highly complex information processing devices

[2, 11].

Computers take input data, perform complex manipulations contingent on this data, and finally

present an output. Organizations do just the same. They collect informational input from the

environment (e.g., market research information indicating a new opportunity or a customer

complaint), process this data (e.g., set up an R&D project or understand the reason for the

complaint), and create an output (e.g., introduce a new product or produce a response to the

customer complaint).

Hence, the wide set of parallel design patterns presented above can inform organizational decision

making about structures and processes with regard to three different aspects.

First, they are a reminder that thinking hard about concurrency in tough problems might pay off

even when it is not immediately obvious, and they provide a variety of patterns to look for. Is

there really not an intelligent cut through that project behind schedule which allows using a data

decomposition approach? Maybe a second project manager could take over some of the workload

and both project managers would only need to align on a very limited set of issues every once in a

while?

Second, the different design patterns make it easier to identify possible alternative approaches to

parallelization. Take the example of building an IT system that impacts multiple departments. Is it

necessary to divide and conquer, i.e. build the modules for the departments individually, and later

connect all the partial solutions simultaneously with a “Big Bang” launch? Or might it be

preferable to take a data decomposition approach, i.e. build department-specific systems and

simultaneously create interfaces only between the individual departments that really need them?

Third, organizations should consider whether a number of patterns can be fruitfully combined or

nested. An example could be insurance companies’ claims processing departments, which today

often operate in task parallelism logic: Every incoming letter is assigned to a clerk for processing.

Instead, incoming mail might well be opened, digitized, and preprocessed in a pipeline fashion

first, reaping benefits of specialization. Only in a final step, every claim could be assigned to an

individual clerk for processing, thereby introducing some task parallelism logic.

Speculating on parallelism

Beyond programming patters, however, there is at least one additional technique that parallel

computers leverage to increase computation speed.

When computers with multiple processors execute complex programs, they will invariably have

some of the processors run idle at times. The more processors there are, the greater the chance that

a few of them will not have anything to do at a given point in time. Software and hardware

engineers have long understood this, and successfully capitalize on it. The technique they use is

called “speculative execution” [5].

The basic idea is that the processor tries to make a guess about which part of a computer program

gets executed next and to run it before it is known whether it actually needs to be run. In case it

turns out that the program part needed to be executed, the computer wins time. In case it turns out

the program part did not need to be executed, the computer simply disposes of the calculated

results.

Imagine a computer program running on a computer with two processors. Assume further that the

program uses one processor to perform a calculation and that the further execution of the program

depends on the outcome of that calculation. If speed is paramount, it might be a good idea for the

second processor to make an educated guess about the first processor’s result and “speculate” on

it. The second processor can attempt to continue the program execution without knowing the

actual result that the first processor will produce. In case the second processor speculates

correctly, there is a significant upside: The result of the calculation that it computed in advance

can be used immediately. In case the speculation does not work out and the calculation result

cannot be used, little is lost: Had the processor not speculated, it would simply have been idle.

The only cost of a lost speculation shows up on the electricity bill.

Similarly, if there are resources that have to wait for others before they can begin to work in an

organization, it might be fruitful to speculate on future needs and act accordingly. Consider, for

example, the case in which you need to wait for a CEO decision on which of two product ideas to

pursue further. If time is critical, it might be worth beginning to map out business plans for both

of them before the decision is taken.

Naturally, employees might not be happy about discarding the results of their work in case the

speculating manager loses the bet. However, explicit recognition of their work and adequate

celebration of work output, even if it is ultimately unneeded, might attenuate any hard feelings

and turn intelligent speculation into a competitive advantage.

Harnessing parallelism in organizations

By considering the three programming patterns described, as well as the idea of speculative

execution, organizations can increase their speed through identifying concurrency in their tasks

and choosing appropriate organization structures and processes. Alternatively, if speed is

sufficient already, improving structure and processes might potentially allow organizations to use

less sophisticated individual processors, i.e. to reduce personnel cost.

Where do you see opportunities to apply parallel patterns to program your organization?

References

[1] D’Aveni, R./Canger, J. M./Doyle, J. J. (1995): Coping with hypercompetition: Utilizing the

new 7S’s framework, in: Academy of Management Executive, Vol. 9 (1995), No.3, pp. 45–

60.

[2] Galbraith, J. R. (1974): Organization design: An information processing view, in: Interfaces,

Vol. 4 (1974), No. 3, pp. 28–36.

[3] Gamma, E./Helm, R./Johnson, R./Vlissides, J. (1994): Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley.

[4] Johnson-Laird, P. N. (1988): The Computer and the Mind: An Introduction to Cognitive

Science. Cambridge, MA: Harvard University Press.

[5] Kaeli, D./Yew, P.-C. (2005): Speculative Execution in High Performance Computer

Architectures. Boca Raton, FL: CRC Press.

[6] Mattson, T. G./Sanders, B. A./Massingill, B. L. (2004): Patterns for Parallel Programming,

Addison-Wesley Professional.

[7] Moore, G. E. (1965): Cramming more components onto integrated circuits, in: Electronics,

Vol. 38 (1965), No. 8, pp. 114–117.

[8] Newell, A./Shaw, J. C./Simon, H. A. (1958): Elements of a theory of human problem solving,

in: Psychological Review, Vol. 65 (1958), No. 3, pp. 151–166.

[9] Newell, A./H. A. Simon (1972) Human Problem Solving. Englewood Cliffs, NJ: Prentice-

Hall.

[10] Searle, J. R. (1980): Minds, brains, and programs, in: Behavioral and brain sciences, Vol. 3

(1980), No. 3, pp. 417–457.

[11] Tushman, M. L./Nadler, D. A. (1978): Information processing as an integrating concept in

organizational design, in: Academy of Management Review, Vol. 3 (1978), No. 3, pp. 613–

624.

[12] TOP500 (2014): TOP500 Supercomputer Sites, online: http://www.top500.org, as of 2014-

07-01.

